3.4 \(\int x \log (c (a+b x^2)^p) \, dx\)

Optimal. Leaf size=35 \[ \frac {\left (a+b x^2\right ) \log \left (c \left (a+b x^2\right )^p\right )}{2 b}-\frac {p x^2}{2} \]

[Out]

-1/2*p*x^2+1/2*(b*x^2+a)*ln(c*(b*x^2+a)^p)/b

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2454, 2389, 2295} \[ \frac {\left (a+b x^2\right ) \log \left (c \left (a+b x^2\right )^p\right )}{2 b}-\frac {p x^2}{2} \]

Antiderivative was successfully verified.

[In]

Int[x*Log[c*(a + b*x^2)^p],x]

[Out]

-(p*x^2)/2 + ((a + b*x^2)*Log[c*(a + b*x^2)^p])/(2*b)

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int x \log \left (c \left (a+b x^2\right )^p\right ) \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \log \left (c (a+b x)^p\right ) \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \log \left (c x^p\right ) \, dx,x,a+b x^2\right )}{2 b}\\ &=-\frac {p x^2}{2}+\frac {\left (a+b x^2\right ) \log \left (c \left (a+b x^2\right )^p\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 34, normalized size = 0.97 \[ \frac {1}{2} \left (\frac {\left (a+b x^2\right ) \log \left (c \left (a+b x^2\right )^p\right )}{b}-p x^2\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x*Log[c*(a + b*x^2)^p],x]

[Out]

(-(p*x^2) + ((a + b*x^2)*Log[c*(a + b*x^2)^p])/b)/2

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 40, normalized size = 1.14 \[ -\frac {b p x^{2} - b x^{2} \log \relax (c) - {\left (b p x^{2} + a p\right )} \log \left (b x^{2} + a\right )}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(c*(b*x^2+a)^p),x, algorithm="fricas")

[Out]

-1/2*(b*p*x^2 - b*x^2*log(c) - (b*p*x^2 + a*p)*log(b*x^2 + a))/b

________________________________________________________________________________________

giac [A]  time = 0.16, size = 43, normalized size = 1.23 \[ -\frac {{\left (b x^{2} - {\left (b x^{2} + a\right )} \log \left (b x^{2} + a\right ) + a\right )} p - {\left (b x^{2} + a\right )} \log \relax (c)}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(c*(b*x^2+a)^p),x, algorithm="giac")

[Out]

-1/2*((b*x^2 - (b*x^2 + a)*log(b*x^2 + a) + a)*p - (b*x^2 + a)*log(c))/b

________________________________________________________________________________________

maple [A]  time = 0.07, size = 50, normalized size = 1.43 \[ -\frac {p \,x^{2}}{2}+\frac {x^{2} \ln \left (c \left (b \,x^{2}+a \right )^{p}\right )}{2}-\frac {a p}{2 b}+\frac {a \ln \left (c \left (b \,x^{2}+a \right )^{p}\right )}{2 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*ln(c*(b*x^2+a)^p),x)

[Out]

1/2*x^2*ln(c*(b*x^2+a)^p)-1/2*p*x^2+1/2/b*ln(c*(b*x^2+a)^p)*a-1/2/b*a*p

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 44, normalized size = 1.26 \[ -\frac {1}{2} \, b p {\left (\frac {x^{2}}{b} - \frac {a \log \left (b x^{2} + a\right )}{b^{2}}\right )} + \frac {1}{2} \, x^{2} \log \left ({\left (b x^{2} + a\right )}^{p} c\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*log(c*(b*x^2+a)^p),x, algorithm="maxima")

[Out]

-1/2*b*p*(x^2/b - a*log(b*x^2 + a)/b^2) + 1/2*x^2*log((b*x^2 + a)^p*c)

________________________________________________________________________________________

mupad [B]  time = 0.23, size = 39, normalized size = 1.11 \[ \frac {x^2\,\ln \left (c\,{\left (b\,x^2+a\right )}^p\right )}{2}-\frac {p\,x^2}{2}+\frac {a\,p\,\ln \left (b\,x^2+a\right )}{2\,b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*log(c*(a + b*x^2)^p),x)

[Out]

(x^2*log(c*(a + b*x^2)^p))/2 - (p*x^2)/2 + (a*p*log(a + b*x^2))/(2*b)

________________________________________________________________________________________

sympy [A]  time = 2.10, size = 56, normalized size = 1.60 \[ \begin {cases} \frac {a p \log {\left (a + b x^{2} \right )}}{2 b} + \frac {p x^{2} \log {\left (a + b x^{2} \right )}}{2} - \frac {p x^{2}}{2} + \frac {x^{2} \log {\relax (c )}}{2} & \text {for}\: b \neq 0 \\\frac {x^{2} \log {\left (a^{p} c \right )}}{2} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*ln(c*(b*x**2+a)**p),x)

[Out]

Piecewise((a*p*log(a + b*x**2)/(2*b) + p*x**2*log(a + b*x**2)/2 - p*x**2/2 + x**2*log(c)/2, Ne(b, 0)), (x**2*l
og(a**p*c)/2, True))

________________________________________________________________________________________